检查点

[TOC]

CheckPoints

为了使 Flink 的状态具有良好的容错性,Flink 提供了检查点机制 (CheckPoints) 。通过检查点机制,Flink 定期在数据流上生成 checkpoint barrier ,当某个算子收到 barrier 时,即会基于当前状态生成一份快照,然后再将该 barrier 传递到下游算子,下游算子接收到该 barrier 后,也基于当前状态生成一份快照,依次传递直至到最后的 Sink 算子上。当出现异常后,Flink 就可以根据最近的一次的快照数据将所有算子恢复到先前的状态。

开启检查点

默认情况下,检查点机制是关闭的,需要在程序中进行开启:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
// 开启检查点机制,并指定状态检查点之间的时间间隔
env.enableCheckpointing(1000);

// 其他可选配置如下:
// 设置语义
env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
// 设置两个检查点之间的最小时间间隔
env.getCheckpointConfig().setMinPauseBetweenCheckpoints(500);
// 设置执行Checkpoint操作时的超时时间
env.getCheckpointConfig().setCheckpointTimeout(60000);
// 设置最大并发执行的检查点的数量
env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
// 将检查点持久化到外部存储
env.getCheckpointConfig().enableExternalizedCheckpoints(
ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
// 如果有更近的保存点时,是否将作业回退到该检查点
env.getCheckpointConfig().setPreferCheckpointForRecovery(true);

保存点机制

保存点机制 (Savepoints) 是检查点机制的一种特殊的实现,它允许你通过手工的方式来触发 Checkpoint,并将结果持久化存储到指定路径中,主要用于避免 Flink 集群在重启或升级时导致状态丢失。示例如下:

1
2
# 触发指定id的作业的Savepoint,并将结果存储到指定目录下
bin/flink savepoint :jobId [:targetDirectory]

更多命令和配置可以参考官方文档:savepoints

状态后端

状态管理器分类

默认情况下,所有的状态都存储在 JVM 的堆内存中,在状态数据过多的情况下,这种方式很有可能导致内存溢出,因此 Flink 该提供了其它方式来存储状态数据,这些存储方式统一称为状态后端 (或状态管理器):

主要有以下三种:

1. MemoryStateBackend

默认的方式,即基于 JVM 的堆内存进行存储,主要适用于本地开发和调试。

2. FsStateBackend

基于文件系统进行存储,可以是本地文件系统,也可以是 HDFS 等分布式文件系统。 需要注意而是虽然选择使用了 FsStateBackend ,但正在进行的数据仍然是存储在 TaskManager 的内存中的,只有在 checkpoint 时,才会将状态快照写入到指定文件系统上。

3. RocksDBStateBackend

RocksDBStateBackend 是 Flink 内置的第三方状态管理器,采用嵌入式的 key-value 型数据库 RocksDB 来存储正在进行的数据。等到 checkpoint 时,再将其中的数据持久化到指定的文件系统中,所以采用 RocksDBStateBackend 时也需要配置持久化存储的文件系统。之所以这样做是因为 RocksDB 作为嵌入式数据库安全性比较低,但比起全文件系统的方式,其读取速率更快;比起全内存的方式,其存储空间更大,因此它是一种比较均衡的方案。

配置方式

Flink 支持使用两种方式来配置后端管理器:

第一种方式:基于代码方式进行配置,只对当前作业生效:

1
2
3
4
// 配置 FsStateBackend
env.setStateBackend(new FsStateBackend("hdfs://namenode:40010/flink/checkpoints"));
// 配置 RocksDBStateBackend
env.setStateBackend(new RocksDBStateBackend("hdfs://namenode:40010/flink/checkpoints"));

配置 RocksDBStateBackend 时,需要额外导入下面的依赖:

1
2
3
4
5
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-statebackend-rocksdb_2.11</artifactId>
<version>1.9.0</version>
</dependency>

第二种方式:基于 flink-conf.yaml 配置文件的方式进行配置,对所有部署在该集群上的作业都生效:

1
2
state.backend: filesystem
state.checkpoints.dir: hdfs://namenode:40010/flink/checkpoints