[TOC]
为什么要三次握手?
信息对等和防止超时
两次握手不行吗?
防止失效的链接突然到达
ack 值是 seq 加 1?
ack表示告诉前面的数据我已经收到了。
SYN洪泛攻击?
什么是SYN洪范泛攻击?
- SYN Flood利用TCP协议缺陷,发送大量伪造的TCP连接请求,常用假冒的IP或IP号段发来海量的请求连接的第一个握手包(SYN包),被攻击服务器回应第二个握手包(SYN+ACK包),因为对方是假冒IP,对方永远收不到包且不会回应第三个握手包。导致被攻击服务器保持大量SYN_RECV状态的“半连接”,并且会重试默认5次回应第二个握手包,大量随机的恶意syn占满了未完成连接队列,导致正常合法的syn排不上队列,让正常的业务请求连接不进来。【服务器端的资源分配是在二次握手时分配的,而客户端的资源是在完成三次握手时分配的,所以服务器容易受到SYN洪泛攻击】
检测 SYN 攻击非常的方便,当你在服务器上看到大量的半连接状态时,特别是源IP地址是随机的,基本上可以断定这是一次SYN攻击【在 Linux/Unix 上可以使用系统自带的 netstats 命令来检测 SYN 攻击】
怎么解决?
- 缩短超时(SYN Timeout)时间
- 增加最大半连接数
- 过滤网关防护
- SYN cookies技术:
- 当服务器接受到 SYN 报文段时,不直接为该 TCP 分配资源,而只是打开一个半开的套接字。接着会使用 SYN 报文段的源 Id,目的 Id,端口号以及只有服务器自己知道的一个秘密函数生成一个 cookie,并把 cookie 作为序列号响应给客户端。
- 如果客户端是正常建立连接,将会返回一个确认字段为 cookie + 1 的报文段。接下来服务器会根据确认报文的源 Id,目的 Id,端口号以及秘密函数计算出一个结果,如果结果的值 + 1 等于确认字段的值,则证明是刚刚请求连接的客户端,这时候才为该 TCP 分配资源
关闭的时候却是四次握手?
服务器还有数据要发送
为什么TCP挥手每两次中间有一个 FIN-WAIT2等待时间?
- 主动关闭的一端调用完close以后(即发FIN给被动关闭的一端, 并且收到其对FIN的确认ACK)则进入FIN_WAIT_2状态。如果这个时候因为网络突然断掉、被动关闭的一段宕机等原因,导致主动关闭的一端不能收到被动关闭的一端发来的FIN(防止对端不发送关闭连接的FIN包给本端),这个时候就需要FIN_WAIT_2定时器, 如果在该定时器超时的时候,还是没收到被动关闭一端发来的FIN,那么直接释放这个链接,进入CLOSE状态
TIME-WAIT?
在高并发短连接的TCP服务器上,当服务器处理完请求后立刻主动正常关闭连接。这个场景下会出现大量socket处于TIME_WAIT状态。如果客户端的并发量持续很高,此时部分客户端就会显示连接不上
服务器上出现大量的TIME_WAIT连接,占据大量的tuple /tApl/ ,严重消耗着服务器的资源,此时部分客户端就会显示连接不上
作为客户端,短时间内大量的短连接,会大量消耗的Client机器的端口,毕竟端口只有65535个,端口被耗尽了,后续就无法在发起新的连接了
CLOSE-WAIT?
- 程序问题:如果代码层面忘记了 close 相应的 socket 连接,那么自然不会发出 FIN 包,从而导致 CLOSE_WAIT 累积;或者代码不严谨,出现死循环之类的问题,导致即便后面写了 close 也永远执行不到。
- 响应太慢或者超时设置过小:如果连接双方不和谐,一方不耐烦直接 timeout,另一方却还在忙于耗时逻辑,就会导致 close 被延后。响应太慢是首要问题,不过换个角度看,也可能是 timeout 设置过小。
需要检查代码,特别是释放资源的代码,或者是处理请求的线程配置。
增大TIME out
可靠
1.使用序号来检测丢失的分组和冗余副本
2.使用确认来告诉发送方确认的分组信息
3.检验和来检测一个传输分组中的比特错误
4.使用定时器来用于超时重传一个分组
5.ARQ
连续ARQ
回退N步
选择重传
6.流量控制和拥塞控制
TCP有哪些计时器
TCP共使用以下四种计时器,即重传计时器、坚持计时器、保活计时器和时间等待计时器 。这几个计时器的主要特点如下:
1、重传计时器
当TCP发送报文段时,就创建该特定报文段的重传计时器 。可能发生两种情况:
(1)、若在计时器截止时间到( 通常是60秒 )之前收到了对此特定报文段的确认,则撤销此计时器。
(2)、若在收到了对此特定报文段的确认之前计时器截止期到,则重传此报文段,并将计时器复位。
2、坚持计时器
为了对付零窗口大小通知,TCP需要另一个计时器。假定接收TCP宣布了窗口大小为零。发送TCP就停止传送报文段,直到接收TCP发送确认并宣布一个非零的窗口大小。但这个确认可能会丢失。我们知道在TCP中,对确认是不需要发送确认的。若确认丢失了,接收TCP并不知道,而是会认为它已经完成任务了,并等待着发送TCP接着会发送更多的报文段。但发送TCP由于没有收到确认,就等待对方发送确认来通知窗口的大小。双方的TCP都在永远地等待着对方。
要打开这种死锁,TCP为每一个连接使用一个坚持计时器。 当发送TCP收到一个窗口大小为零的确认时,就启动坚持计时器 。 当坚持计时器期限到时,发送TCP就发送一个特殊的报文段, 叫做 探测报文段 。这个报文段只有一个字节的数据。它有一个序号,但它的序号永远不需要确认;甚至在计算对其他部分的数据的确认时该序号也被忽略。探测报文段提醒对端:确认已丢失,必须重传。
坚持计时器的值设置为重传时间的数值。但是,若没有收到从接收端来的响应,则需发送另一个探测报文段,并将坚持计时器的值加倍和复位。发送端继续发送探测报文段,将坚持计时器设定的值加倍和复位,直到这个值增大到门限值( 通常是60秒 )为止。在这以后,发送端每隔60秒就发送一个探测报文段,直到窗口重新打开。
3、保活计时器
保活计时器使用在某些实现中,用来防止在两个TCP之间的连接出现长时期的空闲。假定客户打开了到服务器的连接,传送了一些数据,然后就保持静默了。也许这个客户出故障了。在这种情况下,这个连接将永远地处理打开状态。
要解决这种问题,在大多数的实现中都是使服务器设置保活计时器。每当服务器收到客户的信息,就将计时器复位。保活计时器 通常设置为2小时 。若服务器过了2小时还没有收到客户的信息,它就发送探测报文段。若发送了10个探测报文段(每一个相隔75秒)还没有响应,就假定客户出了故障,因而就终止该连接。
4、时间等待计时器
时间等待计时器是在连接终止期间使用的 。当TCP关闭一个连接时,它并不认为这个连接马上就真正地关闭了。在时间等待期间中,连接还处于一种中间过渡状态。这就可以使重复的FIN报文段(如果有的话)可以到达目的站因而可将其丢弃。这个计时器的值 通常设置为一个报文段的寿命期待值的两倍 。