Go相关

[TOC]

第 1 章 GO 语言相关

第 1.1 节 Go基础

一、基本概念

Go语言的并发是基于 goroutine 的,goroutine 类似于线程,但并非线程。可以将 goroutine 理解为一种虚拟线程。Go 语言运行时会参与调度 goroutine,并将 goroutine 合理地分配到每个 CPU 中,最大限度地使用CPU性能。开启一个goroutine的消耗非常小(大约2KB的内存),你可以轻松创建数百万个goroutine

goroutine的特点:

1
2
3
4
1.`goroutine`具有可增长的分段堆栈。这意味着它们只在需要时才会使用更多内存。
2.`goroutine`的启动时间比线程快。
3.`goroutine`原生支持利用channel安全地进行通信。
4.`goroutine`共享数据结构时无需使用互斥锁。

二、GOPATH

GOPATH是一个环境变量,用来表明你写的go项目的存放路径

image-20210402155311913

三、概念

1.init函数

对同一个go文件的init()调用顺序是从上到下的。

对同一个package中不同文件是按文件名字符串比较“从小到大”顺序调用各文件中的init()函数。

对于不同的package,如果不相互依赖的话,按照main包中”先import的后调用”的顺序调用其包中的init(),如果package存在依赖,则先调用最早被依赖的package中的init(),最后调用main函数。

如果init函数中使用了println()或者print()你会发现在执行过程中这两个不会按照你想象中的顺序执行。这两个函数官方只推荐在测试环境中使用,对于正式环境不要使用。

2.一些基础命令

go build命令用于编译我们指定的源码文件或代码包以及它们的依赖包。

go install用于编译并安装指定的代码包及它们的依赖包。

go clean命令会删除掉执行其它命令时产生的一些文件和目录。

3.下划线

  import 下划线(如:import hello/imp)的作用:当导入一个包时,该包下的文件里所有init()函数都会被执行,然而,有些时候我们并不需要把整个包都导入进来,仅仅是是希望它执行init()函数而已。这个时候就可以使用 import 引用该包。即使用【import _ 包路径】只是引用该包,仅仅是为了调用init()函数,所以无法通过包名来调用包中的其他函数。 示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
 src 
|
+--- main.go
|
+--- hello
|
+--- hello.go
package main

import _ "./hello"

func main() {
// hello.Print()
//编译报错:./main.go:6:5: undefined: hello
}

hello.go

1
2
3
4
5
6
7
8
9
10
11
package hello

import "fmt"

func init() {
fmt.Println("imp-init() come here.")
}

func Print() {
fmt.Println("Hello!")
}

输出结果:

1
imp-init() come here.

四、字符类型

Go 语言的字符有以下两种:

1
2
3
uint8类型,或者叫 byte 型,代表了ASCII码的一个字符。

rune类型,代表一个 UTF-8字符。

当需要处理中文、日文或者其他复合字符时,则需要用到rune类型。rune类型实际是一个int32。 Go 使用了特殊的 rune 类型来处理 Unicode,让基于 Unicode的文本处理更为方便,也可以使用 byte 型进行默认字符串处理,性能和扩展性都有照顾

1
2
3
4
5
6
7
8
9
10
11
12
// 遍历字符串
func traversalString() {
s := "pprof.cn博客"
for i := 0; i < len(s); i++ { //byte
fmt.Printf("%v(%c) ", s[i], s[i])
}
fmt.Println()
for _, r := range s { //rune
fmt.Printf("%v(%c) ", r, r)
}
fmt.Println()
}

输出:

1
2
112(p) 112(p) 114(r) 111(o) 102(f) 46(.) 99(c) 110(n) 229(å) 141() 154() 229(å) 174(®) 162(¢)
112(p) 112(p) 114(r) 111(o) 102(f) 46(.) 99(c) 110(n) 21338(博) 23458(客)
动词 功能
%v 按值的本来值输出
%+v 在 %v 的基础上,对结构体字段名和值进行展开
%#v 输出 Go 语言语法格式的值
%T 输出 Go 语言语法格式的类型和值
%% 输出 %% 本体
%b 整型以二进制方式显示
%o 整型以八进制方式显示
%d 整型以十进制方式显示
%x 整型以 十六进制显示
%X 整型以十六进制、字母大写方式显示
%U Unicode 字符
%f 浮点数
%p 指针,十六进制方式显示

五、Array

1.概念

Go 数组是值类型,赋值和函数传参操作都会复制整个数组数据。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
func main() {
arrayA := [2]int{100, 200}
var arrayB [2]int

arrayB = arrayA

fmt.Printf("arrayA : %p , %v\n", &arrayA, arrayA)
fmt.Printf("arrayB : %p , %v\n", &arrayB, arrayB)

testArray(arrayA)
}

func testArray(x [2]int) {
fmt.Printf("func Array : %p , %v\n", &x, x)
}

六、切片Slice

1.概览

slice 并不是数组或数组指针。它通过内部指针和相关属性引用数组片段,以实现变长方案。

  1. 切片:切片是数组的一个引用,因此切片是引用类型。但自身是结构体,值拷贝传递。
  2. 切片的定义:var 变量名 []类型,比如 var str []string var arr []int。
  3. 如果 slice == nil,那么 len、cap 结果都等于 0。
2.用法
1
2
3
4
5
6
7
8
// 2.:=
s2 := []int{}
// 3.make()
var s3 []int = make([]int, 0)
fmt.Println(s1, s2, s3)
// 4.初始化赋值
var s4 []int = make([]int, 0, 0)
fmt.Println(s4)
3.为什么要有切片

每次传参都用数组,那么每次数组都要被复制一遍。于是有人想到,函数传参用数组的指针。

1
2
3
4
5
6
7
8
9
10
11
12
func main() {
arrayA := [2]int{100, 200}
testArrayPoint(&arrayA) // 1.传数组指针
arrayB := arrayA[:]
testArrayPoint(&arrayB) // 2.传切片
fmt.Printf("arrayA : %p , %v\n", &arrayA, arrayA)
}

func testArrayPoint(x *[]int) {
fmt.Printf("func Array : %p , %v\n", x, *x)
(*x)[1] += 100
}
4.数据结构
1
2
3
4
5
type slice struct {
array unsafe.Pointer
len int
cap int
}

img

如果想从 slice 中得到一块内存地址,可以这样做:

1
2
s := make([]byte, 200)
ptr := unsafe.Pointer(&s[0])
5.make的原理
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
func makeslice(et *_type, len, cap int) slice {
// 根据切片的数据类型,获取切片的最大容量
maxElements := maxSliceCap(et.size)
// 比较切片的长度,长度值域应该在[0,maxElements]之间
if len < 0 || uintptr(len) > maxElements {
panic(errorString("makeslice: len out of range"))
}
// 比较切片的容量,容量值域应该在[len,maxElements]之间
if cap < len || uintptr(cap) > maxElements {
panic(errorString("makeslice: cap out of range"))
}
// 根据切片的容量申请内存
p := mallocgc(et.size*uintptr(cap), et, true)
// 返回申请好内存的切片的首地址
return slice{p, len, cap}
}

img

6.切片扩容
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
func growslice(et *_type, old slice, cap int) slice {
if raceenabled {
callerpc := getcallerpc(unsafe.Pointer(&et))
racereadrangepc(old.array, uintptr(old.len*int(et.size)), callerpc, funcPC(growslice))
}
if msanenabled {
msanread(old.array, uintptr(old.len*int(et.size)))
}

if et.size == 0 {
// 如果新要扩容的容量比原来的容量还要小,这代表要缩容了,那么可以直接报panic了。
if cap < old.cap {
panic(errorString("growslice: cap out of range"))
}

// 如果当前切片的大小为0,还调用了扩容方法,那么就新生成一个新的容量的切片返回。
return slice{unsafe.Pointer(&zerobase), old.len, cap}
}

// 这里就是扩容的策略
newcap := old.cap
doublecap := newcap + newcap
if cap > doublecap {
newcap = cap
} else {
if old.len < 1024 {
newcap = doublecap
} else {
for newcap < cap {
newcap += newcap / 4
}
}
}

// 计算新的切片的容量,长度。
var lenmem, newlenmem, capmem uintptr
const ptrSize = unsafe.Sizeof((*byte)(nil))
switch et.size {
case 1:
lenmem = uintptr(old.len)
newlenmem = uintptr(cap)
capmem = roundupsize(uintptr(newcap))
newcap = int(capmem)
case ptrSize:
lenmem = uintptr(old.len) * ptrSize
newlenmem = uintptr(cap) * ptrSize
capmem = roundupsize(uintptr(newcap) * ptrSize)
newcap = int(capmem / ptrSize)
default:
lenmem = uintptr(old.len) * et.size
newlenmem = uintptr(cap) * et.size
capmem = roundupsize(uintptr(newcap) * et.size)
newcap = int(capmem / et.size)
}

// 判断非法的值,保证容量是在增加,并且容量不超过最大容量
if cap < old.cap || uintptr(newcap) > maxSliceCap(et.size) {
panic(errorString("growslice: cap out of range"))
}

var p unsafe.Pointer
if et.kind&kindNoPointers != 0 {
// 在老的切片后面继续扩充容量
p = mallocgc(capmem, nil, false)
// 将 lenmem 这个多个 bytes 从 old.array地址 拷贝到 p 的地址处
memmove(p, old.array, lenmem)
// 先将 P 地址加上新的容量得到新切片容量的地址,然后将新切片容量地址后面的 capmem-newlenmem 个 bytes 这块内存初始化。为之后继续 append() 操作腾出空间。
memclrNoHeapPointers(add(p, newlenmem), capmem-newlenmem)
} else {
// 重新申请新的数组给新切片
// 重新申请 capmen 这个大的内存地址,并且初始化为0值
p = mallocgc(capmem, et, true)
if !writeBarrier.enabled {
// 如果还不能打开写锁,那么只能把 lenmem 大小的 bytes 字节从 old.array 拷贝到 p 的地址处
memmove(p, old.array, lenmem)
} else {
// 循环拷贝老的切片的值
for i := uintptr(0); i < lenmem; i += et.size {
typedmemmove(et, add(p, i), add(old.array, i))
}
}
}
// 返回最终新切片,容量更新为最新扩容之后的容量
return slice{p, old.len, newcap}
}

七、闭包

所谓“闭包”,指的是一个拥有许多变量和绑定了这些变量的环境的表达式(通常是一个函数),因而这些变量也是该表达式的一部分。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
package main

import (
"fmt"
)

func a() func() int {
i := 0
b := func() int {
i++
fmt.Println(i)
return i
}
return b
}

func main() {
c := a()
c()
c()
c()

a() //不会输出i
}

八、fmt

1.输出

Fprint系列函数会将内容输出到一个io.Writer接口类型的变量w中,我们通常用这个函数往文件中写入内容。

1
2
3
func Fprint(w io.Writer, a ...interface{}) (n int, err error)
func Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error)
func Fprintln(w io.Writer, a ...interface{}) (n int, err error)

Sprint系列函数会把传入的数据生成并返回一个字符串。

1
2
3
func Sprint(a ...interface{}) string
func Sprintf(format string, a ...interface{}) string
func Sprintln(a ...interface{}) string

Errorf函数根据format参数生成格式化字符串并返回一个包含该字符串的错误。

1
func Errorf(format string, a ...interface{}) error
2.格式化占位符
1.输出
占位符 说明
%v 值的默认格式表示
%+v 类似%v,但输出结构体时会添加字段名
%#v 值的Go语法表示
%T 打印值的类型
%% 百分号
1
2
3
4
5
6
7
8
fmt.Printf("%v\n", 100)
fmt.Printf("%v\n", false)
o := struct{ name string }{"枯藤"}
fmt.Printf("%v\n", o)
fmt.Printf("%+v\n", o)
fmt.Printf("%#v\n", o)
fmt.Printf("%T\n", o)
fmt.Printf("100%%\n")

输出结果如下:

1
2
3
4
5
6
7
100
false
{枯藤}
{name:枯藤}
struct { name string }{name:"枯藤"}
struct { name string }
100%
2. 浮点数与复数
占位符 说明
%b 无小数部分、二进制指数的科学计数法,如-123456p-78
%e 科学计数法,如-1234.456e+78
%E 科学计数法,如-1234.456E+78
%f 有小数部分但无指数部分,如123.456
%F 等价于%f
%g 根据实际情况采用%e或%f格式(以获得更简洁、准确的输出)
%G 根据实际情况采用%E或%F格式(以获得更简洁、准确的输出)
1
2
3
4
5
6
7
f := 12.34
fmt.Printf("%b\n", f)
fmt.Printf("%e\n", f)
fmt.Printf("%E\n", f)
fmt.Printf("%f\n", f)
fmt.Printf("%g\n", f)
fmt.Printf("%G\n", f)
3.字符串
占位符 说明
%s 直接输出字符串或者[]byte
%q 该值对应的双引号括起来的go语法字符串字面值,必要时会采用安全的转义表示
%x 每个字节用两字符十六进制数表示(使用a-f
%X 每个字节用两字符十六进制数表示(使用A-F)
1
2
3
4
5
s := "枯藤"
fmt.Printf("%s\n", s)
fmt.Printf("%q\n", s)
fmt.Printf("%x\n", s)
fmt.Printf("%X\n", s)

输出结果如下:

1
2
3
4
枯藤
"枯藤"
e69eafe897a4
E69EAFE897A4
4.获取输入

fmt.Scan

  • Scan从标准输入扫描文本,读取由空白符分隔的值保存到传递给本函数的参数中,换行符视为空白符。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    func main() {
    var (
    name string
    age int
    married bool
    )
    fmt.Scan(&name, &age, &married)
    fmt.Printf("扫描结果 name:%s age:%d married:%t \n", name, age, married)
    }
5.Log
1
logger会打印每条日志信息的日期、时间,默认输出到系统的标准错误。Fatal系列函数会在写入日志信息后调用os.Exit(1)。Panic系列函数会在写入日志信息后panic。

九、异常处理

1.panic

Golang 没有结构化异常,使用 panic 抛出错误,recover 捕获错误。

异常的使用场景简单描述:Go中可以抛出一个panic的异常,然后在defer中通过recover捕获这个异常,然后正常处理。

注意:

1.利用recover处理panic指令,defer 必须放在 panic 之前定义,另外 recover 只有在 defer 调用的函数中才有效。否则当panic时,recover无法捕获到panic,无法防止panic扩散。
2.recover 处理异常后,逻辑并不会恢复到 panic 那个点去,函数跑到 defer 之后的那个点。
3.多个 defer 会形成 defer 栈,后定义的 defer 语句会被最先调用。

1.基本用法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
package main

func main() {
test()
}

func test() {
defer func() {
if err := recover(); err != nil {
println(err.(string)) // 将 interface{} 转型为具体类型。
}
}()

panic("panic error!")
}

2.延迟调用中引发的错误,可被后续延迟调用捕获,但仅最后一个错误可被捕获。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
package main

import "fmt"

func test() {
defer func() {
fmt.Println(recover())
}()

defer func() {
panic("defer panic")
}()

panic("test panic")
}

func main() {
test()
}

输出:

1
defer panic

3.捕获函数 recover 只有在延迟调用内直接调用才会终止错误,否则总是返回 nil。任何未捕获的错误都会沿调用堆栈向外传递。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
package main

import "fmt"

func test() {
defer func() {
fmt.Println(recover()) //有效
}()
defer recover() //无效!
defer fmt.Println(recover()) //无效!
defer func() {
func() {
println("defer inner")
recover() //无效!
}()
}()

panic("test panic")
}

func main() {
test()
}

输出:

1
2
3
defer inner
<nil>
test panic
2.自定义error
1.返回异常
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
package main

import (
"errors"
"fmt"
)

func getCircleArea(radius float32) (area float32, err error) {
if radius < 0 {
// 构建个异常对象
err = errors.New("半径不能为负")
return
}
area = 3.14 * radius * radius
return
}

func main() {
area, err := getCircleArea(-5)
if err != nil {
fmt.Println(err)
} else {
fmt.Println(area)
}
}

十、Context的使用

context.Context是一个接口,该接口定义了四个需要实现的方法。具体签名如下:

1
2
3
4
5
6
type Context interface {
Deadline() (deadline time.Time, ok bool)
Done() <-chan struct{}
Err() error
Value(key interface{}) interface{}
}

其中:

  • Deadline方法需要返回当前Context被取消的时间,也就是完成工作的截止时间(deadline);
  • Done方法需要返回一个Channel,这个Channel会在当前工作完成或者上下文被取消之后关闭,多次调用Done方法会返回同一个Channel;
  • Err方法会返回当前Context结束的原因,它只会在Done返回的Channel被关闭时才会返回非空的值;
    • 如果当前Context被取消就会返回Canceled错误;
    • 如果当前Context超时就会返回DeadlineExceeded错误;
  • Value方法会从Context中返回键对应的值,对于同一个上下文来说,多次调用Value 并传入相同的Key会返回相同的结果,该方法仅用于传递跨API和进程间跟请求域的数据;

第 1.2 节 Go容器

第 1.3 节 Go并发

一、Goroutine

1.概述

Go语言中的goroutine就是这样一种机制,goroutine的概念类似于线程,但 goroutine是由Go的运行时(runtime)调度和管理的。Go程序会智能地将 goroutine 中的任务合理地分配给每个CPU。Go语言之所以被称为现代化的编程语言,就是因为它在语言层面已经内置了调度和上下文切换的机制。一个goroutine必定对应一个函数,可以创建多个goroutine去执行相同的函数。

2.启动
1
2
3
4
5
6
7
8
func hello() {
fmt.Println("Hello Goroutine!")
}
func main() {
hello()
fmt.Println("main goroutine done!")
time.Sleep(time.Second)
}

启动多个线程

1
2
3
4
5
6
7
8
9
10
11
12
13
14
var wg sync.WaitGroup

func hello(i int) {
defer wg.Done() // goroutine结束就登记-1
fmt.Println("Hello Goroutine!", i)
}
func main() {

for i := 0; i < 10; i++ {
wg.Add(1) // 启动一个goroutine就登记+1
go hello(i)
}
wg.Wait() // 等待所有登记的goroutine都结束
}
3.Goroutinue与线程
3.1可增长的栈

OS线程(操作系统线程)一般都有固定的栈内存(通常为2MB),一个goroutine的栈在其生命周期开始时只有很小的栈(典型情况下2KB),goroutine的栈不是固定的,他可以按需增大和缩小,goroutine的栈大小限制可以达到1GB,虽然极少会用到这个大。所以在Go语言中一次创建十万左右的goroutine也是可以的。

3.2goroutine调度

GPM是Go语言运行时(runtime)层面的实现,是go语言自己实现的一套调度系统。区别于操作系统调度OS线程。

  • 1.G很好理解,就是个goroutine的,里面除了存放本goroutine信息外 还有与所在P的绑定等信息。
  • 2.Processor P管理着一组goroutine队列,P里面会存储当前goroutine运行的上下文环境(函数指针,堆栈地址及地址边界),P会对自己管理的goroutine队列做一些调度(比如把占用CPU时间较长的goroutine暂停、运行后续的goroutine等等)当自己的队列消费完了就去全局队列里取,如果全局队列里也消费完了会去其他P的队列里抢任务。
  • 3.M(machine)是Go运行时(runtime)对操作系统内核线程的虚拟, M与内核线程一般是一一映射的关系, 一个groutine最终是要放到M上执行的;

P与M一般也是一一对应的。他们关系是: P管理着一组G挂载在M上运行。当一个G长久阻塞在一个M上时,runtime会新建一个M,阻塞G所在的P会把其他的G 挂载在新建的M上。当旧的G阻塞完成或者认为其已经死掉时 回收旧的M。

单从线程调度讲,Go语言相比起其他语言的优势在于OS线程是由OS内核来调度的,goroutine则是由Go运行时(runtime)自己的调度器调度的,这个调度器使用一个称为m:n调度的技术(复用/调度m个goroutine到n个OS线程)。 其一大特点是goroutine的调度是在用户态下完成的, 不涉及内核态与用户态之间的频繁切换,包括内存的分配与释放,都是在用户态维护着一块大的内存池, 不直接调用系统的malloc函数(除非内存池需要改变),成本比调度OS线程低很多。 另一方面充分利用了多核的硬件资源,近似的把若干goroutine均分在物理线程上, 再加上本身goroutine的超轻量,以上种种保证了go调度方面的性能。

二、runtime包

1. runtime.Gosched()

让出CPU时间片,重新等待安排任务

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
package main

import (
"fmt"
"runtime"
)

func main() {
go func(s string) {
for i := 0; i < 2; i++ {
fmt.Println(s)
}
}("world")
// 主协程
for i := 0; i < 2; i++ {
// 切一下,再次分配任务
runtime.Gosched()
fmt.Println("hello")
}
}
2. runtime.Goexit()

退出当前协程

1
2
3
4
5
6
7
8
9
10
11
12
13
14
func main() {
go func() {
defer fmt.Println("A.defer")
func() {
defer fmt.Println("B.defer")
// 结束协程
runtime.Goexit()
defer fmt.Println("C.defer")
fmt.Println("B")
}()
fmt.Println("A")
}()
time.Sleep(time.Second)
}
3. runtime.GOMAXPROCS

使用GOMAXPROCS参数来确定需要使用多少个OS线程来同时执行Go代码。默认值是机器上的CPU核心数。例如在一个8核心的机器上,调度器会把Go代码同时调度到8个OS线程上(GOMAXPROCS是m:n调度中的n)

Go语言中的操作系统线程和goroutine的关系:

  • 1.一个操作系统线程对应用户态多个goroutine。
  • 2.go程序可以同时使用多个操作系统线程。
  • 3.goroutine和OS线程是多对多的关系,即m:n。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
func a() {
for i := 1; i < 10; i++ {
fmt.Println("A:", i)
}
}

func b() {
for i := 1; i < 10; i++ {
fmt.Println("B:", i)
}
}

func main() {
runtime.GOMAXPROCS(2)
go a()
go b()
time.Sleep(time.Second)
}

三、Channel

通道总结

概述

Go语言的并发模型是CSP(Communicating Sequential Processes),提倡通过通信共享内存而不是通过共享内存而实现通信。

如果说goroutine是Go程序并发的执行体,channel就是它们之间的连接。channel是可以让一个goroutine发送特定值到另一个goroutine的通信机制。

Go 语言中的通道(channel)是一种特殊的类型。通道像一个传送带或者队列,总是遵循先入先出(First In First Out)的规则,保证收发数据的顺序。每一个通道都是一个具体类型的导管,也就是声明channel的时候需要为其指定元素类型。

类型
1
2
3
var ch1 chan int   // 声明一个传递整型的通道
var ch2 chan bool // 声明一个传递布尔型的通道
var ch3 chan []int // 声明一个传递int切片的通道

初始化

1
2
3
ch4 := make(chan int)
ch5 := make(chan bool)
ch6 := make(chan []int)
操作

通道有发送(send)、接收(receive)和关闭(close)三种操作。

发送和接收都使用<-符号。

1. 无缓冲管道
1
2
3
4
5
6
7
8
9
10
func recv(c chan int) {
ret := <-c
fmt.Println("接收成功", ret)
}
func main() {
ch := make(chan int)
go recv(ch) // 启用goroutine从通道接收值
ch <- 10
fmt.Println("发送成功")
}
2. 缓冲管道
1
2
3
4
5
func main() {
ch := make(chan int, 1) // 创建一个容量为1的有缓冲区通道
ch <- 10
fmt.Println("发送成功")
}
3. 单项管道
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
func counter(out chan<- int) {
for i := 0; i < 100; i++ {
out <- i
}
close(out)
}

func squarer(out chan<- int, in <-chan int) {
for i := range in {
out <- i * i
}
close(out)
}
func printer(in <-chan int) {
for i := range in {
fmt.Println(i)
}
}

func main() {
ch1 := make(chan int)
ch2 := make(chan int)
go counter(ch1)
go squarer(ch2, ch1)
printer(ch2)
}
Goroutine池
worker pool
  • 本质上是生产者消费者模型
  • 需求:
    • 计算一个数字的各个位数之和,例如数字123,结果为1+2+3=6
    • 随机生成数字进行计算
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
package main

import (
"fmt"
"math/rand"
)

type Job struct {
// id
Id int
// 需要计算的随机数
RandNum int
}

type Result struct {
// 这里必须传对象实例
job *Job
// 求和
sum int
}

func main() {
// 需要2个管道
// 1.job管道
jobChan := make(chan *Job, 128)
// 2.结果管道
resultChan := make(chan *Result, 128)
// 3.创建工作池
createPool(64, jobChan, resultChan)
// 4.开个打印的协程
go func(resultChan chan *Result) {
// 遍历结果管道打印
for result := range resultChan {
fmt.Printf("job id:%v randnum:%v result:%d\n", result.job.Id,
result.job.RandNum, result.sum)
}
}(resultChan)
var id int
// 循环创建job,输入到管道
for {
id++
// 生成随机数
r_num := rand.Int()
job := &Job{
Id: id,
RandNum: r_num,
}
jobChan <- job
}
}

// 创建工作池
// 参数1:开几个协程
func createPool(num int, jobChan chan *Job, resultChan chan *Result) {
// 根据开协程个数,去跑运行
for i := 0; i < num; i++ {
go func(jobChan chan *Job, resultChan chan *Result) {
// 执行运算
// 遍历job管道所有数据,进行相加
for job := range jobChan {
// 随机数接过来
r_num := job.RandNum
// 随机数每一位相加
// 定义返回值
var sum int
for r_num != 0 {
tmp := r_num % 10
sum += tmp
r_num /= 10
}
// 想要的结果是Result
r := &Result{
job: job,
sum: sum,
}
//运算结果扔到管道
resultChan <- r
}
}(jobChan, resultChan)
}
}

四、定时器

  • Timer:时间到了,执行只执行1次
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
package main

import (
"fmt"
"time"
)

func main() {
// 1.timer基本使用
//timer1 := time.NewTimer(2 * time.Second)
//t1 := time.Now()
//fmt.Printf("t1:%v\n", t1)
//t2 := <-timer1.C
//fmt.Printf("t2:%v\n", t2)

// 2.验证timer只能响应1次
//timer2 := time.NewTimer(time.Second)
//for {
// <-timer2.C
// fmt.Println("时间到")
//}

// 3.timer实现延时的功能
//(1)
//time.Sleep(time.Second)
//(2)
//timer3 := time.NewTimer(2 * time.Second)
//<-timer3.C
//fmt.Println("2秒到")
//(3)
//<-time.After(2*time.Second)
//fmt.Println("2秒到")

// 4.停止定时器
//timer4 := time.NewTimer(2 * time.Second)
//go func() {
// <-timer4.C
// fmt.Println("定时器执行了")
//}()
//b := timer4.Stop()
//if b {
// fmt.Println("timer4已经关闭")
//}

// 5.重置定时器
timer5 := time.NewTimer(3 * time.Second)
timer5.Reset(1 * time.Second)
fmt.Println(time.Now())
fmt.Println(<-timer5.C)

for {
}
}
  • Ticker:时间到了,多次执行
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
package main

import (
"fmt"
"time"
)

func main() {
// 1.获取ticker对象
ticker := time.NewTicker(1 * time.Second)
i := 0
// 子协程
go func() {
for {
//<-ticker.C
i++
fmt.Println(<-ticker.C)
if i == 5 {
//停止
ticker.Stop()
}
}
}()
for {
}
}

五、Select

多路复用

在某些场景下我们需要同时从多个通道接收数据。

select的使用类似于switch语句,它有一系列case分支和一个默认的分支。每个case会对应一个通道的通信(接收或发送)过程。select会一直等待,直到某个case的通信操作完成时,就会执行case分支对应的语句。具体格式如下:

  • select可以同时监听一个或多个channel,直到其中一个channel ready
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
ackage main

import (
"fmt"
)

func main() {
// 创建2个管道
int_chan := make(chan int, 1)
string_chan := make(chan string, 1)
go func() {
//time.Sleep(2 * time.Second)
int_chan <- 1
}()
go func() {
string_chan <- "hello"
}()
select {
case value := <-int_chan:
fmt.Println("int:", value)
case value := <-string_chan:
fmt.Println("string:", value)
}
fmt.Println("main结束")
}

六、并发安全和锁

有时候在Go代码中可能会存在多个goroutine同时操作一个资源(临界区),这种情况会发生竞态问题(数据竞态)

1.互斥锁
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
var x int64
var wg sync.WaitGroup
var lock sync.Mutex

func add() {
for i := 0; i < 5000; i++ {
lock.Lock() // 加锁
x = x + 1
lock.Unlock() // 解锁
}
wg.Done()
}
func main() {
wg.Add(2)
go add()
go add()
wg.Wait()
fmt.Println(x)
}
2.读写互斥锁

读写锁在Go语言中使用sync包中的RWMutex类型。

读写锁分为两种:读锁和写锁。当一个goroutine获取读锁之后,其他的goroutine如果是获取读锁会继续获得锁,如果是获取写锁就会等待;当一个goroutine获取写锁之后,其他的goroutine无论是获取读锁还是写锁都会等待。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
var (
x int64
wg sync.WaitGroup
lock sync.Mutex
rwlock sync.RWMutex
)

func write() {
// lock.Lock() // 加互斥锁
rwlock.Lock() // 加写锁
x = x + 1
time.Sleep(10 * time.Millisecond) // 假设读操作耗时10毫秒
rwlock.Unlock() // 解写锁
// lock.Unlock() // 解互斥锁
wg.Done()
}

func read() {
// lock.Lock() // 加互斥锁
rwlock.RLock() // 加读锁
time.Sleep(time.Millisecond) // 假设读操作耗时1毫秒
rwlock.RUnlock() // 解读锁
// lock.Unlock() // 解互斥锁
wg.Done()
}

func main() {
start := time.Now()
for i := 0; i < 10; i++ {
wg.Add(1)
go write()
}

for i := 0; i < 1000; i++ {
wg.Add(1)
go read()
}

wg.Wait()
end := time.Now()
fmt.Println(end.Sub(start))
}

七、Sync的用法

sync.WaitGroup
1
2
3
4
5
6
7
8
9
10
11
12
var wg sync.WaitGroup

func hello() {
defer wg.Done()
fmt.Println("Hello Goroutine!")
}
func main() {
wg.Add(1)
go hello() // 启动另外一个goroutine去执行hello函数
fmt.Println("main goroutine done!")
wg.Wait()
}
sync.Map

sync.Map内置了诸如Store、Load、LoadOrStore、Delete、Range等操作方法。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
var m = sync.Map{}

func main() {
wg := sync.WaitGroup{}
for i := 0; i < 20; i++ {
wg.Add(1)
go func(n int) {
key := strconv.Itoa(n)
m.Store(key, n)
value, _ := m.Load(key)
fmt.Printf("k=:%v,v:=%v\n", key, value)
wg.Done()
}(i)
}
wg.Wait()
}

八、atomic包

Go语言中原子操作由内置的标准库sync/atomic提供。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
var x int64
var l sync.Mutex
var wg sync.WaitGroup

// 普通版加函数
func add() {
// x = x + 1
x++ // 等价于上面的操作
wg.Done()
}

// 互斥锁版加函数
func mutexAdd() {
l.Lock()
x++
l.Unlock()
wg.Done()
}

// 原子操作版加函数
func atomicAdd() {
atomic.AddInt64(&x, 1)
wg.Done()
}

func main() {
start := time.Now()
for i := 0; i < 10000; i++ {
wg.Add(1)
// go add() // 普通版add函数 不是并发安全的
// go mutexAdd() // 加锁版add函数 是并发安全的,但是加锁性能开销大
go atomicAdd() // 原子操作版add函数 是并发安全,性能优于加锁版
}
wg.Wait()
end := time.Now()
fmt.Println(x)
fmt.Println(end.Sub(start))
}

九、GMP原理

多进程、多线程已经提高了系统的并发能力,但是在当今互联网高并发场景下,为每个任务都创建一个线程是不现实的,因为会消耗大量的内存 (进程虚拟内存会占用 4GB [32 位操作系统], 而线程也要大约 4MB)。

一个 “用户态线程” 必须要绑定一个 “内核态线程”,但是 CPU 并不知道有 “用户态线程” 的存在,它只知道它运行的是一个 “内核态线程”(Linux 的 PCB 进程控制块)。再去细化去分类一下,内核线程依然叫 “线程 (thread)”,用户线程叫 “协程 (co-routine)”.

image-20210501205253676

看到这里,我们就要开脑洞了,既然一个协程 (co-routine) 可以绑定一个线程 (thread),那么能不能多个协程 (co-routine) 绑定一个或者多个线程 (thread) 上呢。

之后,我们就看到了有 3 中协程和线程的映射关系:

N:1 关系

N 个协程绑定 1 个线程,优点就是协程在用户态线程即完成切换,不会陷入到内核态,这种切换非常的轻量快速。但也有很大的缺点,1 个进程的所有协程都绑定在 1 个线程上

缺点:

  • 某个程序用不了硬件的多核加速能力
  • 一旦某协程阻塞,造成线程阻塞,本进程的其他协程都无法执行了,根本就没有并发的能力了。

image-20210501205358246

M:N 关系

M 个协程绑定 1 个线程,是 N:1 和 1:1 类型的结合,克服了以上 2 种模型的缺点,但实现起来最为复杂。

img

协程跟线程是有区别的,线程由 CPU 调度是抢占式的,协程由用户态调度是协作式的,一个协程让出 CPU 后,才执行下一个协程。

goroutine

Go 为了提供更容易使用的并发方法,使用了 goroutine 和 channel。goroutine 来自协程的概念,让一组可复用的函数运行在一组线程之上,即使有协程阻塞,该线程的其他协程也可以被 runtime 调度,转移到其他可运行的线程上。最关键的是,程序员看不到这些底层的细节,这就降低了编程的难度,提供了更容易的并发。

Go 中,协程被称为 goroutine,它非常轻量,一个 goroutine 只占几 KB,并且这几 KB 就足够 goroutine 运行完,这就能在有限的内存空间内支持大量 goroutine,支持了更多的并发。虽然一个 goroutine 的栈只占几 KB,但实际是可伸缩的,如果需要更多内容,runtime 会自动为 goroutine 分配。

旧的调度器

image-20210501210005373

M 想要执行、放回 G 都必须访问全局 G 队列,并且 M 有多个,即多线程访问同一资源需要加锁进行保证互斥 / 同步,所以全局 G 队列是有互斥锁进行保护的。

老调度器有几个缺点:

  • 创建、销毁、调度 G 都需要每个 M 获取锁,这就形成了激烈的锁竞争。
  • M 转移 G 会造成延迟和额外的系统负载。比如当 G 中包含创建新协程的时候,M 创建了 G’,为了继续执行 G,需要把 G’交给 M’执行,也造成了很差的局部性,因为 G’和 G 是相关的,最好放在 M 上执行,而不是其他 M’。
  • 系统调用 (CPU 在 M 之间的切换) 导致频繁的线程阻塞和取消阻塞操作增加了系统开销。

第 1.4 节 Go内存分配

第 1.5 节 Go Web